Maximal commutative subalgebras of Grassmann Algebra

Ho-Hon Leung, UAEU

23 May, 2018

References

- 1. M. Domoskos and M. Zubor. Commutative subalgebras of the Grassmann algebra, *J. Algebra Appl.* **14**(8):1550125, 13, (2015).
- 2. V. Bovdi and H-H. Leung. Maximal commutative subalgebras of a Grassmann algebra, to appear in *J. Algebra Appl.* (arXiv:1803.03457v1 [math.RA])

Introduction

Let V be a vector space of dimension n over a field \mathbb{F} (char $\mathbb{F} \neq 2$), with a basis $\{v_1, v_2, ..., v_n\}$.

Definitions

The Grassmann Algebra (or Exterior Algebra) $G(n) := E^{(n)}$ of V is the (associative) \mathbb{F} -algebra given by:

$$G(n) = \mathbb{F} < v_1, ..., v_n \mid v_i v_j = -v_j v_i, \ (1 \le i, j \le n) > 0$$

Note:

$$Dim(G(n)) = \binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

Properties of Grassmann Algebra

Example:

```
Basis elements of G(4):

1,

v_1, v_2, v_3, v_4,

v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4,

v_1v_2v_3, v_1v_2v_4, v_1v_3v_4, v_2v_3v_4,

v_1v_2v_3v_4.
```

Example:
$$v_1v_2v_1 = -v_1v_1v_2 = 0$$
.

$$Dim G(4) = 2^4 = 16.$$

Properties of Grassmann Algebra

Notes:

(1)
$$v_i^2 = 0$$
, for all $i = 1, ..., n$.

(2) If $I = \{i_1, ..., i_k\} \subset \{1, ..., n\}$, define v_I by $v_I = v_{i_1} v_{i_2} ... v_{i_k}$. Let $a = v_I$, $b = v_J$, then

$$ab = (-1)^{|I||J|}ba.$$

(Example: $a = v_1 v_2$, $b = v_3 v_4$, then

$$ab = (v_1v_2)(v_3v_4) = -v_1v_3v_2v_4$$
$$= v_3v_1v_2v_4 = -v_3v_1v_4v_2$$
$$= v_3v_4v_1v_2 = ba$$

(3) v_I and v_J anti-commutes iff |I| and |J| are odd. They commute otherwise.

Our question

Question

Can we understand the structure of maximal commutative subalgebras of G(n)?

Note:

- (1) Let $G_0 = \text{span} < v_I \mid |I| \text{ is even } >$. It is a commutative subalgebra in G(n).
- (2) A maximal commutative subalgebra in G(n) must contain G_0 . (Hence, it has dimension at least 2^{n-1} .)
- (3) A max. coommutative subalgebra in G(n) can be written as $G_0 \oplus A'_1$, where A'_1 is spanned by some v_J , |J| is odd.

Commutative subalgebras of G(n)

Our goal: To understand the the structure of A'_1 .

Note:

- (1) We only need to consider monomials, v_I , where |I| is odd.
- (2) Since $v_I v_J = -v_J v_I$ when |I| and |J| are odd,

$$v_I v_J = v_J v_I \iff v_I v_J = 0$$

 $v_I v_J = 0 \iff I \cap J \neq \emptyset$

Example:
$$v_1 = v_1 v_2 v_3$$
, $v_1 = v_2$,

$$v_1v_2 = v_1v_2v_3v_2 = -v_1v_2v_2v_3 = 0$$

$$[n] := \{1, ..., n\}.$$

 $\mathcal{P}(n) := \text{set of all subsets of } [n].$

Definitions

Let $S \subset \mathcal{P}(n)$ be a collection of subsets of odd size in [n]. It is *commutative* if $S_1 \cap S_2 \neq \emptyset$ for any $S_1, S_2 \in S$.

Example: n = 4.

- (1) $S_1 = \{\{1,2,3\},\{1,3,4\},\{1\}\}$ is commutative. ($\{1\}$ is a common intersection for all subsets.)
- (2) $S_2 = \{\{1,2,3\},\{1,3,4\}\}$ is commutative.
- (3) $S_3 = \{\{1\}, \{2\}, \{1, 2, 3\}, \{1, 3, 4\}\}$ is not commutative.

$$(A = G_0 \oplus A_1')$$
 is an algebra:
If $v_I \in G_0$ and $v_J \in A_1'$, then $v_I v_J \in A$.

Definitions

Let $S \subset \mathcal{P}(n)$ be a commutative system of subsets of odd size in [n]. It is *algebraic* if $S \cup S_1 \in S$ for any S of even size, $S_1 \in S$ and $S \cap S_1 = \emptyset$.

- (1) $S_1 = \{\{1,2,3\}, \{1,3,4\}, \{1\}\}\$ is commutative but not algebraic. $(\{1,2,4\} = \{1\} \cup \{2,4\} \notin S_1.)$
- (2) $S_2 = \{\{1\}, \{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 4\}\}$ is commutative and algebraic.

Definitions

Let $S \subset \mathcal{P}(n)$ be a commutative algebraic system of subsets of odd size in [n]. It is *maximal* if S has odd size and $S \notin S$, then there exists $S_1 \in S$ such that $S \cap S_1 = \emptyset$.)

Example: n = 4,

- (1) $\mathcal{S}_1=\{\{1,2,3\},\{1,3,4\},\{1,2,4\}\}$ is commutative, algebraic, but not maximal. $(\{1\}\notin\mathcal{S}_1$, and it intersects with all members in \mathcal{S}_1 .)
- (2) $S_2 = \{\{1\}, \{1,2,3\}, \{1,3,4\}, \{1,2,4\}\}$ is commutative, algebraic and maximal.
- (3) $S_3 = \{\{1,2,3\},\{1,3,4\},\{1,2,4\},\{2,3,4\}\}$ is commutative, algebraic and maximal.

Let N be an subalgebra of G(n). We define

$$\nabla_{N} := \{ I \subseteq [n] \mid v_{I} \in N, \mid I \mid = odd \}.$$

Let T be a maximal commutative algebraic system in [n]. We define:

$$N_T := \operatorname{span}\langle v_I \mid I \in T \rangle.$$

We have the following lemma:

Lemma

If M is a maximal commutative subalgebra of G(n), then ∇_M is a maximal commutative algebraic system.

If T is a maximal commutative algebraic system, then $G_0 \oplus N_T$ is a maximal commutative subalgebra in G(n).

Examples of max. comm. algebraic system

 $\mathcal{P}_n(i)$:= collection of subsets of size i in [n].

If n = 4k,

the following \mathcal{S}_1 is a max. commutative algebraic system.

$$S_1 = \bigcup_{i \text{ is } odd, 2k+1 \leq i \leq 4k-1} \mathcal{P}_n(i).$$

The following S_2 is a max. commutative algebraic system: for $i \in [n]$,

$$S_2(i) = \{S \mid |S| = odd, i \in S\}.$$

Note: We have max. comm. subalgebras $G_0 \oplus N_{S_1}$ and $G_0 \oplus N_{S_2(i)}$.

$$\dim G_0 \oplus N_{S_1} = \dim G_0 \oplus N_{S_2(i)}$$

but they are not isomorphic.

Examples for n = 4

$$\dim G(4) = 2^4 = 16.$$

$$\begin{split} \mathcal{S}_1 &= \mathcal{P}_4(3) = \{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}\}. \\ \mathcal{S}_2(1) &= \{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1\}\}. \\ \mathcal{S}_2(4) &= \{\{2,3,4\},\{1,2,4\},\{1,3,4\},\{4\}\}. \end{split}$$

$$\dim(\textit{G}_0\oplus\textit{N}_{\mathcal{S}_1})=\dim(\textit{G}_0\oplus\textit{N}_{\mathcal{S}_2(1)})=\dim(\textit{G}_0\oplus\textit{N}_{\mathcal{S}_2(4)})=8+4=12,$$

Note: $G_0 \oplus N_{S_1}$ is not isomorphic to $G_0 \oplus N_{S_2(1)}$.

But, $G_0 \oplus N_{\mathcal{S}_2(1)}$ is isomorphic to $G_0 \oplus N_{\mathcal{S}_2(4)}$.

Examples of max. comm. algebraic system

If n=4k+2, the following \mathcal{S}_1 is a max. commutative algebraic system. For $j\in [n]$,

$$\mathcal{S}_1 = \left(\cup_{i \text{ is odd}, 2k+3 \leq i \leq 4k+1} \mathcal{P}_n(i) \right) \cup \{U \mid U \in \mathcal{P}_n(2k+1), \ j \in U\}.$$

The following S_2 is a max. commutative algebraic system: for $i \in [n]$,

$$S_2(i) = \{S \mid |S| = odd, i \in S\}.$$

Examples for n = 6

$$\dim G(6) = 2^6 = 64.$$

$$S_1(1) = \mathcal{P}_6(5) \cup \{U \mid 1 \in U, |U| = 3\}.$$

 $S_2(3)$ contains all subsets of odd size which contains 3.

$$\dim(G_0 \oplus N_{S_1(1)}) = \dim(G_0 \oplus N_{S_2(3)}) = 32 + 16 = 48,$$

but they are not isomorphic.

For the case: *n* is even

Theorem (Domokos and Zubor (2015))

If *n* is even, then every maximal commutative subalgebra M(n) of G(n) has dimension $2^{n-1} + 2^{n-2} = 3(2)^{n-2}$.

Note: Not all max. commutative subalgebras of G(n) (n is even) are isomorphic.

For the case: *n* is odd

Remaining question:

Find all max. comm. subalgebras of G(n) when n is odd.

Max. comm. algebraic systems based on a point

For any odd n, the following S is a max. commutative algebraic system: for $i \in [n]$,

$$S(i) = \{S \mid |S| = odd, i \in S\}.$$

Fact:

$$|\mathcal{S}(i)|=2^{n-2}.$$

$$\dim(G_0 \oplus N_{S(i)}) = 2^{n-1} + 2^{n-2} = 3 \cdot 2^{n-2}$$

and $G_0 \oplus N_{S(i)}$ are all isomorphic for different i.

New constructions based on Fano Plane

Goal: Construct new maximal commutative algebraic systems for [n] when n is odd.

Idea: Fano plane (by Gino Fano (1871-1952))

Fano System

Definition

The Fano Set contains the following subsets of the set [7]:

$$A_1 = \{1, 2, 5\}, A_2 = \{1, 3, 6\}, A_3 = \{1, 4, 7\}, A_4 = \{2, 3, 7\},$$

$$A_5 = \{3, 4, 5\}, A_6 = \{5, 6, 7\}, A_7 = \{2, 4, 6\}.$$

Note:

- (1) It is a commutative and maximal in [7] among subsets of size 3.
- (2) For n=7, m=3, by Erdos-Ko-Rado Theorem, the maximum dimension of a maximal commutative system in [7] of size 3 is 15. And the minimum dimension of a maximal commutative system is 7 provided by Fano Set.

EKR's Theorem

Recall:

EKR's theorem

Let k, n be two integers such that $2k \le n$. Suppose \mathcal{S} is a family of subsets of size k in [n] such that each pair of subsets has non-empty intersection, then the number of subsets in A is $\le \binom{n-1}{k-1}$.

The maximal family of subsets can be constructed by picking all subsets of size k which contain a common point.

Example:
$$n = 5$$
, $k = 2$. $S = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}\}.$ $|S| = {5-1 \choose 2-1} = {4 \choose 1} = 4$.

An open question in finite combinatorics

How can we construct the *minimum* family of subsets of size k lwhich are *maximal commutative* such that each pair of subsets has non-empty intersection?

Example:
$$n = 7, k = 3$$
,

Fano set provides such an example.

Generalized Fano System for n = 4k + 7

Let $n \ge 2$.

Our idea: Construct a maximal commutative system in [4k+7] of size 2k+3 with dimension (significantly) less than the dimension $\binom{4k+6}{2k+2}$ provided by EKR's theorem.

We call it a generalized Fano system.

Question (Q1): Does the generalized Fano system have minimum dimension among all maximal commutative systems in [4k + 7] for subsets of size 2k + 3?

Rephrasing Q1

Let $k \ge 2$. Let n = 4k + 7.

Let S be an intersecting family of subsets of size 2k + 3 in [n], define

$$Spec(k,2) = min\{|S| \mid S \text{ is maximal commutative.}\}$$

By EKR's theorem:

$$Spec(k,2) \leq {4k+6 \choose 2k+2}.$$

Rephrasing Q1

Let A_k be the generalized Fano's system (with subsets of size 2k + 3 in [n] = [4k + 7]).

As
$$k o \infty$$
, $\dfrac{|\mathcal{A}_k|}{{4k+6 \choose 2k+2}} o 0.5625$

Hence,
$$\lim_{k\to\infty}\frac{Spec(k,2)}{\binom{4k+6}{2k+2}}\leq 0.5625.$$

Rephrasing Q1

Conjecture 1 (Q1)

Does the generalized Fano system A_k have the minimum dimension among all (maximal commutative) intersecting family of subsets of size 2k + 3 in [4k + 7]?

Conjecture 2

Can we find λ such that $0 < \lambda < 0.5$ such and

$$\lim_{k\to\infty}\frac{Spec(k,2)}{\binom{4k+6}{2k+2}}<\lambda?$$

A conjecture for the case n = 4k + 3

Conjecture (Domoskos and Zubor (2015))

If n=4k+3, then every maximal commutative subalgebras has dimension $2^{n-1}+\sum_{l=k}^{2k}\binom{n}{2l+3}+|\mathcal{S}|$ where \mathcal{S} is a maximal commutative system of minimum dimension.

Theorem (Bovdi and Leung (2018))

If n = 4k + 3, then the conjecture is false provided that Q1 is correct.

A conjecture for the case n = 4k + 1

Conjecture (Domoskos and Zubor (2015))

If n = 4k + 1, all maximal commutative subalgebras of G(n) has dimension at least $3 \cdot 2^{n-2}$.

Theorem (Bovdi and Leung (2018))

If n = 4k + 1 and $17 \le n \le 997$, there exists maximal commutative subalgebras of G(n) with dimension less than $3 \cdot 2^{n-2}$.

Conjecture 3

The theorem can be extended to all n such that $n \ge 17$.

Thank you!