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Review: The Linear Programming Problem

Definition
A linear programming problem (LP) is a collection of instances that
seeks to identify optimal values (max/min) of functions subject to
constraints. An instance of such a problem will consist of a feasible
set F and an objective linear function O : F → R with the objective
being to optimize O(x) over all x ∈ F .

Example:

maximize cT x
Ax ≤ b
x ≥ 0

for x ∈ Rn

We assume componentwise inequalities.
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Review: LP Example

Maximization LP
Maximize 4x1 + 12x2 subject to the constraints:

3x1 + x2 ≤ 180
x1 + 2x2 ≤ 100
−2x1 + 2x2 ≤ 40

x1 ≥ 0, x2 ≥ 0
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Review: LP Example

The Feasible Region, F
x2

x1

−2x1 + 2x2 = 40

3x1 + x2 = 180 x1 + 2x2 = 100

(0, 20)

(20, 40)

(52, 24)

(60, 0)(0, 0)
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Review: Simplex Method

The simplex method (Dantzig) maximizes the objective function by
computing the objective function at selected corner points of the
feasible region until the optimal solution is reached. It begins at the
origin and moves at each stage to a corner point determined by the
variable that will yield the largest increase in O. The steps in the
algorithm methodically “finds” the point, and avoids problem of cycling
through the points (Bland).
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Geometrical Background

We start with a ridiculous hypothetical situation.

Scenario: You want to catch a lion in the Sahara. How do you do it?

1. Fence in the Sahara.
2. Split the fenced-in region into two.
3. The lion is in one of the regions, right?
4. Fence in that region.
5. Repeats steps 2-4 until the lion is precisely located or declare it

nonexistent (e.g. when the fencing is so small a lion couldn’t fit
into half of it).

If the Sahara were R this might sound a little bit like the bisection
method. In which case, we would like to describe the ellipsoid method
as a more advanced version of the bisection method.

Elaine | Algorithms of Linear Programming Part 2 | | MUIC



7

Geometrical Background

We now define an ellipsoid.

Definition
A general ellipsoid centered at z ∈ Rn can be represented by the
set of vectors

E = E(z,D) = {x ∈ Rn|(x − z)T D−1(x − z) ≤ 1}

where D is an n × n positive definite symmetric matrix.

Recall that an n × n symmetric matrix D is positive definite iff:
I x ′Dx > 0 for all nonzero vectors x ∈ Rn.
I D has only real and positive eigenvalues.
I D = BT B for some nonsingular matrix B.

Note: D is nonsingular and its inverse is also positive definite.
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Geometrical Background

1. A basic example in R2: 5x2 + 8xy + 5y2 ≤ 1
2. Every ellipsoid is the image of the unit ball under a bijective

affine transformation.
3. Vol(E(D, z)) =

√
detD · Vol(S(0,1)) in Rn

(by change of variables)
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Geometrical Background

Ellipsoids are convex sets.

Definition (Convex Set)
A set A is convex if (1− t)a + tb ∈ A for all t ∈ [0,1] and a,b ∈ A.

Examples:
I Rn

I Hypercube of length l in Rn

I Ball of radius r around the origin
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Geometrical Background

Generalizing the notion of an ellipsoid in this manner allows us to
make the following observation.

Lemma (Farkas’ Lemma)
If K ⊂ Rn is a convex set and p ∈ Rn is a point, then one of the
following holds:

1. p ∈ K ,
2. there is a hyperplane* that separates p from K .

Theorem (Separating Hyperplanes*)
Suppose C and D are nonempty disjoint convex sets, i.e., C ∩ D = ∅.
Then there exist a 6= 0 and b such that a′x ≤ b for all x ∈ C and
a′x ≥ b for all x ∈ D. In other words, the affine function a′x − b is
nonpositive on C and nonnegative on D. The hyperplane {x |a′x = b}
is called a separating hyperplane for the sets C and D, or is said to
separate the sets C and D.
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Geometrical Background

K

p
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Geometrical Background

Recall our hypothetical situation. That, and the previous discussion
motivates the following concept.

Separation Oracle
The separation oracle is a decision making process for a convex set
K that allows us to decide whether a point p ∈ K . If not, then it will
return a hyperplane separating p from K .

oracle (n.): A person or agency considered to give wise counsel or
prophetic predictions or precognition of the future, inpspired by the
gods.
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Löwner-John Ellipsoids

Theorem
For every convex set K ⊂ Rn there exists a unique ellipsoid E of
minimal volume containing K . Moreover, K contains the ellipsoid
obtained from E by shrinking it from its center by a factor of n. Let us
call the minimum volume ellipsoid containing a convex set K the
Löwner-John ellipsoid of K .
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Ellipsoid Method

Let E = E(z,D) be an ellipsoid in Rn and let a be a nonzero n-vector.
Define the pair (z̄, D̄) to be

z̄ = z − 1
n + 1

Da√
a′Da

D̄ =
n2

n2 − 1

(
D − 2

n + 1
(Da)(Da)′

a′Da

)
.

Theorem
The matrix D̄ is symmetric and positive definite and thus E ′ = E(z̄, D̄)
is an ellipsoid. Let H− be the half space {x ∈ Rn|a′x ≤ a′z}. Then,

1. (E ∩ H−) ⊂ E ′

2. Vol(E ′) < e−1/(2(n+1))Vol(E)

Observe that the second result shows that the ellipsoids decrease in
volume with each update of (z̄, D̄).
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Ellipsoid Method

Let’s try one iteration. Suppose

z = (0,0) and D =

[
9 0
0 4

]
.

Find z̄ and D̄ and then graph both E(z,D) and E(z̄, D̄).
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Ellipsoid Method

I INPUTS:
I A convex set P.
I A number v for which Vol(P) > v .
I An initial ball E0 = E(x0, r 2I) with finite volume and P ⊂ E0.

I OUTPUT:
I A feasible point x∗ ∈ P, else a statement saying that P is empty.

I Pseudocode:
I While the volume of Ei > v , we denote the center of Ei as p.
I Apply the Separation Oracle on p and P.
I If the answer is ’yes’ take a separating hyperplane H and let Ei+1

be the minimum volume ellipsoid containing Ei ∩ H+. This was
described in the previous theorem. Then let i = i + 1 and allow it to
loop.

I Otherwise return ’no’.
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LP Problems using the Ellipsoid Method

Recall:

Standard LP Problem and its Dual
min bT y
AT y ≥ c

max cT x
Ax ≤ b

Theorem (Dantzig)
A standard minimum problem has a solution if and only if its dual
problem has a solution. If a solution exists, the standard minimum
problem and its dual problem have the same optimal value.
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LP Problems using the Ellipsoid Method

How to formulate LP to apply the method
The constraints of the LP problem form the following convex set

P = {x ∈ Rn|Ax ≤ b},

with corresponding half spaces:

H+ = {x ∈ Rn|a′x ≥ a′z},

H− = {x ∈ Rn|a′x ≤ a′z}

for a being a column of the matrix A. Strong duality requires that
optimal solutions can only occur if and only if the system bT y = cT x
along with all given contraints is feasible. So if we denote Q to be
such a feasible set, then we can apply the ellipsoid method to decide
whether Q is nonempty.
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LP Problems using the Ellipsoid Method

Some examples to compare both methods with a computer:

Maximize x1 + 2x2 given
−x1 − x2 ≤ −2
3x1 ≤ 4
−2x1 + 2x2 ≤ 3
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A Few Iterations of Ellipsoid

Figure: Initial Ball Figure: First Hyperplane
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A Few Iterations of Ellipsoid

Figure: First Iteration Figure: Second Iteration
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LP Problems using the Ellipsoid Method

Some examples to compare both methods with a computer:

Maximize x1 + 2x2 given
−x1 − x2 ≤ −2
3x1 ≤ 4
−2x1 + 2x2 ≤ 3

Maximize 4x1 + 12x2 given
3x1 + x2 ≤ 180
x1 + 2x2 ≤ 100
−2x1 + 2x2 ≤ 40
x1, x2 ≥ 0
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Complexity of Simplex Method

Borgwardt, Haimovich, Smale showed that the simplex runs
poylnomial time on average, but we measure the complexity of this
algorithm based on a worst case pivoting rule. We first recall the
definition of a unit cube in Rn, which has 2n vertices:

0 ≤ xi ≤ 1, i = 1, , , n

Worst Case Simplex (Klee-Minty Cube)
Maximize P = xn subject to the constraints:{

ε ≤ x1 ≤ 1
εxi−1 ≤ xi ≤ 1− εxi−1, i = 2, ...,n

}
for some ε ∈ (0,1/2). The feasible set will have 2n vertices and they
can be ordered so that each one is adjacent to and has higher value
than the previous one. Klee-Minty showed that there exists a
pivoting rule such that the tableau changes at least 2n − 1 times
before termination.
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Complexity of Ellipsoid Method

Lemma
The minimum volume ellipsoid surrounding a half ellipsoid can be
calculated in polynomial time.

Theorem (Kachiyan, 1979)
The linear programming feasibility problem with integer data can be
solved in polynomial time.
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Background and History

People Technique Year

Dantzig Simplex 1947

Klee-Minty Worst Case Simplex 1972

Shor
Ellipsoid Algorithm 1970’sYudin

Nemirovsky

Khachiyan Ellipsoid Proof 1979

Karmarkar Interior Point 1984

Many People Improvements 1980s
to present
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Implications

I This algorithm can be applied to any problem which has its own
corresponding separation oracle (resulting a nice polynomial
time algorithm for the corresponding problem).

I It is a difficult problem because of the insistence of a universal
polynomial bound for all instances of the problem. Thus, it is
mainly used for classification and not as useful in practice.

I The more practical interior point method was developed after
knowledge that it was possible! Unfortunately requires
knowledge of entire constraint system (similar to simplex).

I The fanfare behind Khachiyan’s proof was unprecedented in the
nonscientific world at that time. Good PR though.

Elaine | Algorithms of Linear Programming Part 2 | | MUIC



27
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