

Mahidol University International College

ICNS 103 Midterm Examination

1 March 2014 - 10.00 - 11.50

35 points

Directions: Solve the following problems using the bottom of each page for scratch-work. Write up your solution and answer (in simplified form) in the space provided. Calculators are NOT allowed for this examination.

Problem 1: 10 points

SCORE

1.1 Find the following limits:

(a)
$$\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x^2 + 2x - 15} = \dots$$
 (1 pt.)

(b)
$$\lim_{x \to \infty} \frac{(4x-3)^2}{7x^2+x+5} = \dots$$
 (1 pt.)

Page 1

1.2 Let $f(x) = \begin{cases} kx^2 + 5x - 2, & \text{if } x < -2; \\ 3kx - 2, & \text{if } x \ge -2. \end{cases}$ Answer the following questions.

(a)
$$\lim_{x \to -2^+} f(x) = \dots$$
 (1 pt.)

(a)
$$\lim_{x \to -2^+} f(x) = \dots$$
 (1 pt.)
(b) $\lim_{x \to -2^-} f(x) = \dots$ (1 pt.)

- (c) Find the value of k so that $\lim_{x\to -2} f(x)$ exists. (1 pt.)
- (d) With the value of k obtained from part (c), find f(-2). (1 pt.)
- 1.3 Use the definition of continuity to determine whether the following function is continuous at 1.

$$f(x) = \begin{cases} 4x^2 - 5x + 6, & \text{if } x > 1; \\ 3, & \text{if } x = 1; \\ \frac{3x + 7}{x^2 + 1}, & \text{if } x < 1. \end{cases}$$
(4 pts.)

scratch-work

Problem 2: 10 points

SCORE

2.1 Let
$$f(x) = -\frac{1}{x+1}$$
. Use the definition of the derivative to find $f'(x)$. (2 pts.)

2.2 Let
$$g(x) = \frac{3x^2 + 4x - 2}{x} + 7^5$$
. Evaluate $g'(2)$. (2 pts.)

2.3 Find all x-coordinates on the curve $y = \frac{x^6}{6} - 8x^2 + 1$ where the tangent line is horizontal. (3 pts.)

2.4 Find an equation of the tangent line to the curve $y = 3x - 4\sqrt{x}$ at x = 4. (3 pts.)

SCORE

3.1 Differentiate the following functions with respect to x. Simplify your result.

Problem 3: 10 points

(a)
$$f(x) = \sqrt{(2-x)^2 + 3(2-x)^2}$$
 for $x < 2$ (2 pts.)

(b)
$$g(x) = \frac{2}{3\sqrt{x^3 - 1}} - \frac{3x(4 + \sqrt{x})^4}{2}$$
 (3 pts.)

3.2 Suppose that

$$y = \sqrt[3]{u}$$
, $u = 16 - \frac{1}{t^3}$, and $t = 1 - x$.

Determine $\frac{dy}{dx}\Big|_{x=1/2}$. Simplify your answer to an integer. (2 pts.)

3.3 Suppose that $r(t) = \frac{(t-1)^9}{5(t+2)}$ gives the total revenue (in baht) after t days of sales. Find the rate of change of the revenue with respect to time after the **second** day. Include proper units in your final answer. (3 pts.)

Problem 4: 5 points

4.1 Let
$$y = \frac{e^x}{(1+e^x)^2}$$
. Find $\frac{dy}{dx}$. Simplify your result. (2 pts.)

4.2 Let
$$y = x(\ln x)^2 + x \ln x$$
. Find $\frac{dy}{dx}\Big|_{x=e}$. (2 pts.)

4.3 The cost function is given by $c(q) = e^{3q-2}$, where c is in dollars. Find the marginal cost when q = 2 and interpret the result. (Use $e \approx 3$ to approximate your answer.) (1 pt.)